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ABSTRACT 

 

NONLINEAR VIBRATION ANALYSIS OF L-SHAPED BEAMS AND 

THEIR USE IN VIBRATION REDUCTION 

 

 

Ekici, Yiğitcan 

Master of Science, Mechanical Engineering 

Supervisor : Prof. Dr. Ender Ciğeroğlu 

Co-Supervisor: Prof. Dr. Yiğit Yazıcıoğlu 

 

 

September 2022, 106 pages 

 

In this thesis, nonlinear vibration analysis of both fixed L-shaped beam and L-shaped 

beam attached to a single degree of freedom (SDOF) system is performed for several 

cases with different structural parameters to observe the effect of these parameters. 

Then these beams are proposed to reduce the vibration amplitudes of certain 

structures, and the nonlinear effects on the dynamic responses of these structures are 

investigated. The nonlinear dynamic model of the L-shaped beam is obtained by 

using Euler-Bernoulli Beam Theory and Hamilton’s principle. The equations are 

simplified by disregarding the beams’ axial motions; only the transverse motions are 

considered in calculations. Galerkin’s method is utilized to discretize the obtained 

nonlinear partial differential equations into a set of nonlinear ordinary differential 

equations. These equations are converted into a set of nonlinear algebraic equations 

using Harmonic Balance Method, which are then solved numerically using Newton’s 

method with arc length continuation.  

 

Keywords: Nonlinear Beams, Nonlinear L-Shaped Beams, Structural Dynamics, 

Euler Bernoulli Beam Theory 
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ÖZ 

 

L-ŞEKİLLİ KİRİŞLERİN DOĞRUSAL OLMAYAN TİTREŞİM ANALİZİ 

VE BUNLARIN TİTREŞİM AZALTIMI İÇİN KULLANIMI 

 

 

Ekici, Yiğitcan 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ender Ciğeroğlu 

Ortak Tez Yöneticisi: Prof. Dr. Yiğit Yazıcıoğlu 

 

 

Eylül 2022, 106 sayfa 

 

Bu tezde, hem sabit L-şekilli kirişin hem de tek serbestlik dereceli sisteme bağlanmış 

L-şekilli kirişin doğrusal olmayan titreşim analizi, yapısal parametrelerin etkisini 

gözlemlemek için farklı parametreli çeşitli vaka çalışmaları için yapılmıştır. 

Sonrasında bu kirişlerin belirli yapıların titreşim genliklerini azaltması önerilmiştir 

ve bu yapıların dinamik tepkileri üzerindeki doğrusal olmayan etkiler araştırılmıştır. 

L-şekilli kirişin doğrusal olmayan dinamik modeli, Euler-Bernoulli kiriş teorisi ve 

Hamilton prensibi kullanılarak elde edilmiştir. Kirişlerin eksenel hareketleri göz ardı 

edilerek denklemler basitleştirilmiştir; hesaplamalarda sadece enine hareketler 

dikkate alınmıştır. Galerkin Yöntemi, elde edilen doğrusal olmayan kısmi 

diferansiyel denklemleri bir dizi doğrusal olmayan adi diferansiyel denkleme 

ayırmak için kullanılmıştır. Bu denklemler, Harmonik Denge Yöntemi ile bir dizi 

doğrusal olmayan cebirsel denkleme dönüştürülmüştür ve daha sonra  yay uzunluğu 

sürekliliği ile Newton'un yöntemi kullanılarak sayısal olarak çözülümüştür. 

 

Anahtar Kelimeler: Doğrusal Olmayan Kirişler, Doğrusal Olmayan L-Şekilli 

Kirişler, Yapısal Dinamik, Euler Bernoulli Kiriş Teorisi 
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CHAPTER 1  

1 INTRODUCTION & LITERATURE REVIEW 

L-shaped beams are considered one of the most important components among 

engineering structures [1]. These beams are a sub-class of the beams commonly used 

in many applications such as buildings, aerospace structures, naval structures, 

vehicles, etc. Because of this reason, they are investigated in many studies. Earlier 

papers studied L-shaped beams using linear Euler-Bernoulli beam models since it is 

easy to derive the governing differential equations and it is possible to obtain the 

analytical solution. However, the linear Euler-Bernoulli beam model is valid only 

for small deflections. In later studies, nonlinear Euler-Bernoulli models are 

considered to obtain an accurate solution for large deflections. In addition, many 

studies experimentally observed the response of the beams. Some of these studies 

observed the dynamical behaviors of these beams both mathematically and 

experimentally for the comparison and validation of mathematical models. 

 

Figure 1.1 Picture of an L-Shaped Beam 
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1.1 Literature Survey 

Besides analytical and finite element modeling methods, many numerical methods 

exist to discretize the Euler-Bernoulli beam equation in spatial domain and turn it 

into an ordinary differential equation. The most common ones are the Galerkin 

method, the Collocation method, and the Assumed Modes method [2], [3]. Alongside 

these methods, Samandari and Cigeroglu [1] employed Differential Quadrature 

Method [4], [5] to discretize the nonlinear equations of motion of an L-shaped beam. 

Apart from these, Morales [6] applied the Rayleigh-Ritz-Meirovitch Substructure 

Synthesis method (RRMSSM) [7] to discretize the linear equation of motion of the 

L-shaped beam and compared the results with the results obtained using analytical 

and FEM solutions. In his later work [8], generic expressions of RRMSSM mass and 

stiffness matrices of the L-shaped beam were presented. 

Some studies focus on the analytical solution of L-shaped beams. Bang’s study [9]  

is one of the most prominent ones among these studies. In his study, an analytical 

solution for linearized equations of motion of the L-shaped beam is obtained. 

Gurgoze detected some mistakes in this study and corrected them [10] and later 

improved this study by obtaining an analytical solution of the linear L-shaped beam 

with a point mass attached to its end [11]. Oguamanam et al. [12] obtained linearized 

equations of motion for a two-member open frame structure with an arbitrary angle 

between them. They compared the natural frequencies obtained by the analytical and 

finite element methods. Georgiades et al. [13] studied in-plane and out-of-plane 

modal analysis of L-shaped beams. In this study, the analytical solutions are 

compared with the results of finite element analysis, and it is observed that for in-

plane bending, the effects of shear and inertia are not significant, and for out-of-plane 

bending, the effects of shear and inertia are more critical, especially, for the second 

beam. 

Since the linearized models for L-shaped beams are not valid for large deflections, 

many studies considered the nonlinear models for L-shaped beams. In [14], the 

nonlinear equation of motion of an L-shaped beam was formulated, and the global 
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mode approach was used to obtain mode shapes and natural frequencies of the 

system. The results were compared with FEM results to illustrate the validity of this 

approach. In the study of Georgiades, a nonlinear model for L-shaped beams was 

developed [15]. This study was the first to describe the out-of-plane motion of 

nonlinear L-shaped beams that had been neglected in the literature for many years.  

Besides the studies that focus on analysis and mathematical modeling of L-shaped 

beams, many other studies were performed to observe the dynamical behaviors of 

these beams both mathematically and experimentally. Most of these studies consider 

L-shaped beams with two-to-one internal resonance to a primary resonance [16]–

[21]. The study of Haddow et al. [16] is one of the first studies that compared the 

natural frequencies and planar dynamic responses of an L-shaped beam obtained by 

mathematical model and experiments. In addition, saturation, jump conditions, and 

the non-existence of a steady state response were also demonstrated experimentally. 

In [17]–[21], experimental responses of an L-shaped beam were compared to the 

results obtained by nonlinear mathematical modeling. Experimentally, it is observed 

that periodic, quasi-periodic, and chaotic responses occur when an L-shaped beam 

with quadratic nonlinearities is excited with minimal excitation levels, as predicted 

by the nonlinear theory. 

Moreover, in literature, some papers studied the usage of L-shaped beams as 

piezoelectric energy harvesters. In [22], Erturk et al. developed a novel L-shaped 

beam piezoelectric energy harvester and analyzed its electromechanical behavior. 

The usage of this system in landing gears of UAVs was also suggested. Yao et al. 

[23] performed an experimental study using an L-shaped piezoelectric beam. The 

broadband energy harvesting and dynamic responses of this device were presented, 

and effects of the sizes of the beams and external excitation on the power generation 

behavior were studied. 
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1.2 Motivation and Scope 

The main objective of this thesis is to analyze the behaviors of L-shaped beams by 

carrying out case studies and propose these beams to reduce the vibration amplitudes 

of certain structures as alternatives to tuned mass dampers (TMD) and investigate 

the nonlinear effects on the dynamic responses of these structures. The system is 

constructed as these beams are assumed to be connected from their ends to the 

vibratory systems. To investigate the response of the system, a nonlinear 

mathematical model for an L-shaped beam attached to a SDOF system is derived. 

The linearized mathematical model is verified using commercial finite element (FE) 

software. Case studies are performed to observe the effect of the structural 

parameters on the vibration characteristics on both one end fixed L-shaped beam and 

L-shaped beam attached to a SDOF system. Usage of these L-shaped beams as 

vibration absorbers is demonstrated using both linear and nonlinear L-shaped beams, 

and the effects of nonlinearities on the response of the linear L-shaped beams are 

investigated. 

1.3 Outline 

In Chapter 2, steady-state frequency response analysis of nonlinear vibratory systems 

under periodic excitation is explained. After that, Harmonic Balance Method 

(HBM), which is used to transform nonlinear ordinary differential equations (ODEs) 

into nonlinear algebraic equations (NLAEs), is explained. Finally, the numerical 

solution methods for these nonlinear algebraic equations are described. 

In Chapter 3, the mathematical model of the L-shaped beam attached to a SDOF 

system is derived. Hamilton’s Principle is carried out for the nonlinear Euler 

Bernoulli beam theory to obtain the mathematical model, and governing nonlinear 

partial differential equations (PDEs) are obtained. These PDEs are then transformed 

into nonlinear ODEs using Galerkin’s Method. 
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In Chapter 4, mathematical models of both fixed L-shaped beam and L-shaped beam 

attached to a SDOF system are verified using FE software. Then, case studies are 

performed for both models to investigate the effect of the system parameters on the 

frequency responses of the beams. 

In Chapter 5, nonlinear L-shaped beams are proposed as vibration absorbers as 

alternatives to tuned mass dampers (TMDs). Then, the nonlinear effects on the base 

response of the optimized linear L-shaped beam vibration absorbers and cantilever  

In Chapter 6, a summary of the thesis is explained. The methodology, formulations, 

case studies, and their results are briefly mentioned and discussed. Critical remarks 

about the results are made.
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CHAPTER 2  

2 STEADY STATE PERIODIC RESPONSE ANALYSIS OF NONLINEAR 

STRUCTURES  

2.1 Equation of Motion of a General Nonlinear System 

The equation of motion of a nonlinear vibratory spring-mass system with viscous 

and structural damping is given as, 

 ( ) Ni+ + + =Mq Cq + K H q f f . (2.1) 

M , C , K  and H  terms in Equation (2.1) represent mass, viscous damping, 

stiffness, and structural damping matrices, respectively. q , Nf  and f  terms 

represent response, nonlinear forcing, and external forcing vectors, respectively. 

The response of the nonlinear system can be stationary, periodic, quasi-periodic, or 

chaotic. In this study, only periodic response of the system is considered for a 

periodic external forcing, which can be obtained by utilizing Harmonic Balance 

method. 

2.2 Harmonic Balance Method 

Harmonic Balance method (HBM) is used to calculate the steady-state responses of 

nonlinear systems by transforming nonlinear ordinary differential equations (ODEs) 

into nonlinear algebraic equations (NLAE) in the frequency domain. To apply HBM, 

external forcing and response must be periodic. In HBM, displacement, excitation 

force, and nonlinear internal forcing vectors are represented by the Fourier series as 

periodic functions, and similar terms are balanced to obtain the nonlinear algebraic 

equations. Therefore, the response vector is written as follows, 
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 ( ) ( ) ( )
1

0 sin cos ,,
hN

h h

s c

h

h th    
=

= + + =q q q q  (2.2) 

where 0q  is the bias term, 
h

sq  and 
h

cq  are the coefficients of sine and cosine for the 

thh harmonic, respectively, and hN  is the number of harmonics used in the 

representation. For the exact representation of a periodic function, hN  should be 

selected as infinity. However, in practice, choosing a certain number of harmonics 

should be satisfactory to obtain an approximate representation since the contribution 

of the higher harmonics to the representation will be negligible. To reduce the 

harmonics in order to reduce the computational efforts, it is important to select a 

smaller hN  number such that it will still represent the function with negligible error. 

Similarly, the excitation force vector and nonlinear internal forcing vector can be 

written as follows 

 ( ) ( ) ( )
10 sin cos

hN h h

s ch
h h  

=
= + +f f f f , (2.3) 

 ( ) ( ) ( )0 1
sin cos

hN h h

N N Ns Nch
h h  

=
= + +f f f f . (2.4) 

In order to write the excitation force vector and nonlinear internal forcing vectors in 

Fourier series representation, sine and cosine coefficients for each harmonic should 

be obtained. These coefficients are obtained using Fourier integrals as follows, 

 ( )
0

0

1 T

t dt
T

= f f , (2.5) 

 ( ) ( )
0

2
sin

T
h

s t h t dt
T

= f f , (2.6) 

 ( ) ( )
0

2
cos

T
h

c t h t dt
T

= f f , (2.7) 

 ( )0
0

1 T

N N t dt
T

= f f , (2.8) 
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 ( ) ( )
0

2
sin

T
h

Ns N t h t dt
T

 = f f , (2.9) 

 ( ) ( )
0

2
cos

T
h

Nc N t h t dt
T

 = f f , (2.10) 

where T  is the period ( 2 /T  = ). By substituting Equations (2.2), (2.3) and (2.4) 

into Equation (2.1) and rewriting it in terms of real values, nonlinear ODE is 

transformed into a system of NLAEs as follows, 

 
( )

( )

0 0

2

2

0 0,

-
0,

1,2.. .

h h h

s Ns s

h h h

c Nc s

h

N

h

h

h

N





−

       
  + − =     
        

=

Kq + f f =

K M H q f f

q f fH K - M

-
 (2.11) 

2.3 Numerical Solution of Nonlinear Algebraic Equation System 

Steady-state response of the linear ODEs with periodic excitation can be obtained 

using analytical methods. Additionally, an analytical solution exists for the ODEs 

with simple nonlinearities. For complex nonlinearities, the ODE system can be 

solved only by applying numerical methods. Newton’s method is a popular iterative 

solution method to solve any linear or nonlinear algebraic equation system. In this 

thesis, Newton’s method is employed to solve the NLAEs obtained by transforming 

the nonlinear ODEs by using HBM. However, by only using Newton’s method, 

steady-state response can be obtained for a specific frequency value, not for the 

desired frequency range. In addition, depending on the initial guess, Newton’s 

method may not converge. Even if Newton’s method converges, if multiple response 

values correspond to a specific frequency, the response obtained will depend on the 

selected initial guess. It could be either one of the maximum amplitude, minimum 

amplitude, or an amplitude value between them. Homotopy Continuation or Arc-

Length Continuation with Newton’s method could be used to overcome these 



 

 

10 

mentioned problems or obtain the system’s frequency response for a frequency 

range.  

2.3.1 Newton’s Method 

NLAEs written in Equation (2.11) can be expressed as follows, 

( )

( )

( )

2

0

2

0
2

2

-

-
,

-

-

h h

h h

N

h h

Ns s

h h

Nc c

N N

h h Ns s

N N

Nc ch h

N N

N N

 

 


 

 

     
     
     
     
  + −   
     
     
     
         

K f f

K M - C - H f f

C + H K M f f
r q = q = 0

K M - C - H f f

f fC + H K M

  (2.12) 

Expanding Equation (2.12) in Taylor Series around q ,  

 ( ) ( ) ( ) ( )2, , , O    r +q qq +q + = J q qr , (2.13) 

where ( ),J q  is 

 ( )
,

, i

i j
j

r
J

q



=


q . (2.14) 

Neglecting higher order terms, i.e., ( )2 0O  =q  in Equation (2.13) and considering 

it to be zero, it can be rewritten as, 

 ( ) ( )
1

, , 
−

 = -J r qq q . (2.15) 

New q  value can be found by iterating it as, 

 1 ii+ = +q qq . (2.16) 

Inserting Equation (2.15) into Equation (2.16), 
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 ( ) ( )
1

1 , ,i ii i 
−

+ =q q - J q r q . (2.17) 

Steady state response of the system at frequency   could be obtained by iterating 

Equation (2.17) until it converges. 

Jacobian matrix in Equation (2.14) could be calculated using numerical 

differentiation using Forward Difference Formula as 

 ( )
( ) ( ), ,

,
j j j

j

h  


  −
=

r q + e r q
J q

q
,  (2.18) 

where jh  is the scaled step size and je  is the unit vector in the 
thj  direction. 

2.3.2 Homotopy Continuation with Newton’s Method 

Homotopy Continuation (HCM) is a method to obtain the solution of an NLAE 

system for a specific frequency range. It obtains the solution by following the 

solution path. Because of that, it is considered a path-following method. It uses the 

solution of the linear system at the starting frequency as an initial guess and solves 

the nonlinear system by increasing or decreasing the frequency step by step, using 

the previous solution as an initial guess. For Newton’s Method to converge at the 

starting point, starting frequency should be selected, such as solutions of linear and 

nonlinear systems are close to each other. These solutions are usually close at 

frequencies away from resonance points. The reason for that is that nonlinear forces 

are usually large around resonance points, which makes the linear and nonlinear 

solutions distant. In addition, the step size of the frequency should be selected 

appropriately so that solutions between previous and current steps do not vary too 

much for Newton’s method to converge. However, choosing a too small step size 

will increase the computation time. 
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2.3.3 Arc-Length Continuation with Newton’s Method 

HCM with Newton’s method may encounter convergence problems. It usually 

happens when the path of the solution turns back. Mathematically, this means that 

the determinant of the Jacobian matrix is either zero or too close to zero, i.e., the 

Jacobian matrix is singular that the inverse of it cannot be calculated. Moreover, for 

the case of multiple response values corresponding to a specific frequency point in 

the solution path, obtaining all of these solutions with HBM is impossible since 

frequency only goes in one direction, i.e., it either increases or decreases and doesn’t 

turn back., The direction of the frequency needs to be changed to overcome these 

problems and obtain all solutions in the solution path.  

In ALCM, a new parameter which is the arc-length parameter, is added to the NLAEs 

to make the Jacobian matrix non-singular at the turning points. By adding this, path 

following parameter becomes the new arc-length parameter instead of the frequency. 

This parameter is the radius of a hypothetical multi-dimensional sphere whose 

dimension is equal to the number of NLAEs plus one. In this sphere, the next solution 

point is searched. 

For this new modified system, the frequency will be an unknown in the NLAEs as 

well as the Fourier coefficients of the steady-state response of the system. Then, the 

unknown vector of the system becomes, 

 


 
=  
 

q
a . (2.19) 

A new equation is required since the unknown vector is increased by one. It is the 

equation of the hypothetical multi-dimensional sphere whose center is the previous 

solution point, and its radius is the arc-length parameter. This equation is written as, 

 ( ) ( ) ( ) 2

1 1 1

T

k k k k k k s − − −−  − + + =q q q q , (2.20) 

where s  is the mentioned arc-length parameter and k  is the index number of the 

solution. Equation (2.20) can be rewritten as, 
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 ( ) 2, T

k k k kh s  − q = a a = 0 , (2.21) 

where, 

 
1

1

k k k

k

k k k  

−

−

−   
=   

+   






q q q
a = . (2.22) 

With this additional equation and unknown, Equation (2.17), which is the iteration 

equation in Newton’s method, can be rewritten as, 

 

( ) ( )

( ) ( )

( )

( )

1

1

, ,

,

, , ,

i
k
i
k

i

k

k

i

i

k

k

k

i i

k
ih h h

 

 



  



−

+

=

=

  
       = − 
    

  
   q q

r q r q

r qq
a a

q q q

q

, (2.23) 

where, 

 
( ) ( ), ,

2

i

i
k

k

i T

k

h h

 

 


=

=

  
 =    


 q q

q q
a

q
. (2.24) 

 

Figure 2.1. Frequency Response of a System with Cubic Nonlinearity [24]
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CHAPTER 3  

3 MATHEMATICAL MODEL OF L-SHAPED BEAM ATTACHED TO A SDOF 

SYSTEM 

In this chapter, the nonlinear partial differential equations of motion of an L-shaped 

beam attached to a SDOF system are derived. The system is constructed as an L-

shaped beam attached to a base mass-spring system with structural damping. The 

equations of motions are derived for a beam, transversally excited at the base with 

symmetric cross sections with respect to the respective longitudinal directions. 

Moreover, the motion of the base mass is constrained such that it can only make a 

translational motion in 1y  direction. Because of that, only the in-plane axial and 

transverse motion of the beam are considered, torsional and out-of-plane motion are 

neglected. The beam is modeled as two beams with different coordinate frames 

attached to their respective ends, as shown in Figure 3.1. In addition, point masses 

are connected to each beam to study the effects of such masses on the dynamic 

response of the L-shaped beam.  

 

Figure 3.1. Schematic of the L-Shaped Beam Attached to a SDOF System 
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3.1 Derivation of the Governing Nonlinear PDEs of the System 

Using Von Karman displacement field and strain relationship based on Euler-

Bernoulli Beam theory [25], the nonlinear strain equation can be written as, 

 ( )
2

2

2

1
,

2

r r r
r r r r

r r r

wu w
x z

x x x
z

   
= +  
  

−


, (3.1) 

where subscript r  stands for beam 1 and 2, ru  and rw  represent the axial and 

transverse deflection of the thr  beam, respectively, and rz  is the out-of-plane 

coordinate axis of the thr  beam. These deflections are functions of both spatial ( rx )  

and temporal ( t ) independent variables. 

The potential energy of the spring attached to the base mass can be written as, 

 21

2
b b bV k w=  (3.2) 

where bk  and bw  represent the spring stiffness attached to the base mass and motion 

of the base mass, respectively. The potential energy of the beams can be written as, 

 
0

1

2

r

r

L

r r rr r
A

V dA dx =   , (3.3) 

where r , rA  and rL  are stress, cross-sectional area, and length of the 
thr  beam, 

respectively. Using Hooke’s law, the relation between stress and strain can be written 

as, 

 r r rE = , (3.4) 

where rE  is the Young’s Modulus of the 
thr  beam. 

Using Equations (3.1) and (3.4), Equation (3.3) can be rewritten as, 
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2
2

2

20

1 1

2 2

r

r

L
r r r

r r r
A

r

r

r r

r

w
V

u w
E d dz A x

x x x

    
 +  
    

=

 

−  . (3.5) 

For symmetric cross-section with respect to an axis normal to the beam plane, 

integrating Equation (3.5) with respect to the area term, equation becomes, 

 

2
2 2

2

20

1

2 2

rL
r r r r

r rr

r r

r

r

E u w
dx

x x x

w
V A I

    
 +  
    

 
  = +    

 
  

 . (3.6) 

Since the equation of the kinetic energy for the total system is too long, it is broken 

into five equations. Kinetic energy for the base mass is written as, 

 21

2
b b bT M w= , (3.7) 

where bM  represents the mass of the base. For the first beam, kinetic energy is 

written as, 

 ( )
1 12 2 2

1 1 1 1 1 1 1 1 1
0 0

1 1

2 2

L

b

L

T u dx wA w dxA = ++  , (3.8) 

where 1  represents the density of the first beam. For the second beam, kinetic 

energy is written as, 

 

( )
1 1

1 1

1

2

2

1

2 2 2 2

2 2

2

2 1
0

2

1
22 1

0
1

2

1

2

1

2

L

b

x L

L

x L

x L

T A w w

w
A w u

u dx

dxx
x





=

=

=

= + +

 
+  + −

 
 





, (3.9) 

where 2  represents the density of the second beam. For the concentrated mass on 

the first beam, kinetic energy is written as, 

 ( ) ( ) ( )
1 1

1 1

2 2 2

1 1 1 1 1 1 1 1
0 0

3

1 1

2 2
b

L L

M MT M x L M w xu Ldx w dx = − ++ −  , (3.10) 
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where 1M  and 
1ML  represents the mass of the concentrated mass on the first beam 

and its connection point w.r.t its axis center, respectively.   is the Dirac delta 

function. For the concentrated mass on the second beam, kinetic energy is written as, 

 

( ) ( )

( )

1

2

2

2

1

1

1

21

1

2

1
0

2

1
2 1

4 2 2 2 2

2 2

1

2 2
0

1

2

1

2

bL

L

M

L

M

x

x L

x L

T

x

M w w x L

w
w x u x LM

x

u dx

d





=

=

=

= + + −

 
 ++ − −
 
 





, (3.11) 

where 2M  and 
2ML  represents the mass of the concentrated mass on the second beam 

and its connection point w.r.t its axis center, respectively. 

Virtual work done by base excitation can be written as, 

 nc b bW F w= , (3.12) 

where bF  is the force applied to the base mass. 

Since, coordinate frames attached to both beams are moving frames, the motion of 

the base mass is included in the kinetic energy of the both beams, and the motion of 

the point at the end of the first beam is included in the kinetic energy of the second 

beam.  

Hamilton’s principle can be written as follows, 

 ( )
2 2 2 2

1 1 1 1

0
t

n

t t t t

t t t
c ncL W dt Tdt Vdt W dt    = − =+ +    , (3.13) 

where 

 1 2bV VV V= + + , (3.14) 

 2 3 41bT T T T T T= + + + + . (3.15) 
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Inserting Equations (3.2) and (3.6) into the Equation (3.13), applying integration by 

parts (IBP) to the potential energy part of it, and rearranging the terms, the following 

equations are obtained. 

 
2 2

1 1

t t

t t
b b b bt kV d w w dt =   (3.16) 

 

2 2

1 1

1

2

1 1 1

1
0 2

1

1

4

1

1 1

1 1 1

1

4

1 1 1

1 1 1 1

1 1

1

1 1 1 1

2

1 1

1

1

2

1

2

1

2

t t

t

L

t

u w
E u

x x x

V dt dx dt

w u w w
E w

x x x x x

u w
E

x

A

E A

A
x

I







 
 
 
 

=
   
   +

   
   




      − +  
       
 

     − +       

+

  
 

  
+  

   

 

1

1

2

1

1

2

1 1 1 1

2

1 1 1 1 1

2

1 1

2

1

0

2

1 1 1 1 1

0

1

1
0

1

1

1

2

L

L

t

t

L

u

u w w w
E w dt

x x x x x

w w

x

I

x

A E

E I














  
  
  
  
 

         






 
 


   + + −   
            

 
  



 +        
 

 


 .

  (3.17) 
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2 2 2

1 1

2

0 2

2

2 2
2 2 2

2 2 2

2 2

2 2 2 2
2 2 2 2 2

2 2 2 2

2 2
2 2

2

4

2

4

2

1

2

1

2

1

2

t t

t

L

t

u w
E u

x x x

V dt dx dt

w u w w
E w

x x x x x

u w
AE

x

A

E I A

x







 
 
 
 

=
   
   +

   
   




      − +  
       
 

     − +       

+

  
 

  
+  

   

 

1

2

2

2

2

2

2

2 2 2 2
2 2 2 2 22

2 2

2

0

2

2
0

2

2 2

2

2
2 2

2 2
0

1

2

t

t

L

L

L

u

u w w w
E w dt

x x
IA E

E I

x x x

w w

x x














  
  
  
  
 

         






 
 


   + + −   
            

 
  



 +        
 

 


 .

  (3.18) 

Inserting Equations (3.7)-(3.11) into the Equation (3.13), applying integration by 

parts (IBP) to the kinetic energy part of it and assuming 1u , 2u , 1w , 2w  and bw  are 

prescribed at 1t  and 2t  so that 1 0u = , 2 0u = , 0bw = , 1 0w = , 2 0w = , 

( )1 1 0u L = , ( )1 1 0w L = , 
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 at 1t  and 2t , following equations are 

obtained. 
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The Virtual work part of the Equation (3.13) can be written as, 
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nc b bW dt F w dt =  , (3.24) 

Inserting Equations (3.16)-(3.24) into Equation (3.13), simplifying and rearranging 

it, the following equation could be written as, 
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  (3.25) 

The coefficients 
bwC , 

1uC , 
1wC , 

2uC  and 
2wC  in the Equation (3.25) will give the five 

governing nonlinear partial differential equations (PDEs), and the coefficients ( )1 0u
C

, ( )1 1u L
C , ( )1 0w

C , ( )1 1w L
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 which are the byproducts of the IBP, will give the twelve boundary condition 

(BC) equations of the system by setting all these coefficients to 0 in order to satisfy 

the Equation (3.25). The equations for these coefficients are written as, 
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Since the kinetic energy of the transverse motion is more dominant than the axial 

one, accelerations due to the axial motion of the beams are neglected, i.e., 0iu =  in 

Equations (3.26)-(3.42). Then, Equations (3.27) and (3.29) can be rewritten 

respectively as, 
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Integrating Equations (3.43) and (3.44) along their respective lengths and 

simplifying them, the following equations are obtained as, 
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where U  represents the Heaviside step function. By disregarding the acceleration 

due to axial motion of the beams, Equation (3.26) becomes, 
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Substituting Equations (3.43) and (3.45) into the modified Equation (3.28) where 

accelerations due to axial motion of the beams are disregarded, it becomes, 
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Substituting Equations (3.44) and (3.46) into the modified Equation (3.30) where 

accelerations due to axial motion of the beams are disregarded and rearranging it, it 

becomes, 
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Using Equations (3.45), (3.46) and modified boundary condition Equations (3.31)-

(3.42) where accelerations due to axial motion of the beams are disregarded, BCs are 

obtained as, 
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3.2 Discretization of the Nonlinear PDEs Using Galerkin’s Method 

3.2.1 Galerkin’s Method 

Galerkin’s method is a variational method used to discretize PDEs into ordinary 

differential equations (ODEs). This method turns PDEs into residual forms, then 

multiply with weight functions and integrate over their respective domain. These 

weight functions need to be selected such that they satisfy all geometric BCs; 

however, they don’t have to satisfy natural BCs. Assuming a residual form 

represented as ( ),r x t , the mathematical representation of the above equation is 

 ( ) ( ), 0
D

w x r x t dx =  , (3.58) 
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where ( )w x  represents the weight function and D  represent the domain of the 

equation. Applying IBP to Equation (3.58), this equation is transformed into its weak 

form. This form has two advantages, which are: 

• The dependent variables are required to be p times differentiable in weak 

form, whereas they needed to be 2p times differentiable before. 

• BCs can be relaxed by implementing natural BCs into the weak form using 

the byproducts of IBP. 

Then, using the weight functions as trial functions for the dependent variable, the 

weak form is transformed into ODE. 

3.2.2 Discretization of the Nonlinear PDEs into ODEs 

Assuming an approximate solution for the transverse motion of the beams as, 
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= , (3.59) 

where ( ),r i x  is a trial function, ( ),r iq t  is generalized coordinate, and rn  is the 

number of admissible functions used for thr  beam. The following admissible 

functions are considered as trial functions since they satisfy all geometric BCs and 

are differentiable at least two times. 
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. (3.60) 

Equation (3.60) is also a weight function since trial functions are the weight functions 

in Galerkin’s Method. 

Since bw  is a function of only time, the relationship between bw  and generalized 

coordinate of it can be written as, 

 ( ) ( )b bw t q t= . (3.61) 
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Substituting Equations (3.59) and (3.61) into Equation (3.47), it can be written as, 
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Substituting Equation (3.60) into Equation (3.62) and solving the integrals, it can be 

transformed into a nonlinear ODE as, 
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Applying Galerkin’s method to Equation (3.48) by multiplying it with Equation 

(3.60), applying IBP, integrating it along its respective beam length, and substituting 

Equations (3.59) and (3.61) into it, it can be written as, 
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Applying relaxation of BCs by substituting BC Equations (3.50)-(3.53) into 

Equation (3.64), solving the integrals, and simplifying the equation further, the 

following equation is obtained as, 
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Applying Galerkin’s method to Equation (3.49) by multiplying it with Equation 

(3.60), applying IBP, integrating it along its respective beam length, and substituting 

Equations (3.59) and (3.61) into it, it can be written as, 
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  (3.66) 

Applying relaxation of BCs by substituting BC Equations (3.54)-(3.57) into 

Equation (3.66), solving the integrals, and simplifying the equation further, the 

following equation is obtained as, 

 



 

 

33 

 

( )

( ) ( )

( )( )

( )

( )

2

2

2

1

2

2

2,

2

2
1, 2 2 2 2

1 2

2,

2 2 2 2

1 2

1

2 2

1

2

3

2 2 2

2, 3

2 2

2

2

1

3

1
1

3

1 1

1

1 1 1

2 1

n

j

n

j

i j

M

n

j

i

M

j

j

b

j

j

L
q A L M

i j L

LL
q j A L M

L i L

i i j jE I
q

L i j

i j
A L

i jE A
w q

L i j L







+ +

+

=

=

=

   
  − +  

  + +    

   
  − + +  

  +    

+ + 
−  

+ − 

+

+ +
−

+ +







( )

( )( )

( )

( )

( )

2 2

2

2

2 1

2

2

2 2

2 2

1

,

2 2

1 1 2

2

2, 1, 3

2

2

2 2

2

2 2

1

2 21 1 1

2 1
1

n

j

j

i j

M M

n

i jj k

M M

n

k

i j

L L
M

L L

i j
A L

i ji jE A
q q

L i j L L L
M

L L

q



=

=

+

+

=

  
  

+ +  
       + −         

  + 
  

+ +  + +
−    + +     + −          

−





( )( )( )( )

( )( )

2 2 2

2 2

1 1 1 2

2, 2, 3

1 1 1 1
0

2 1 1

n

j

j

k

n n

l

k l

i j k lE A
q q

L i l j k= = =

 + + + +
=  + + + + 



. (3.67) 

3.3 Representation of Nonlinear ODEs in Matrix Form 

After obtaining governing nonlinear ODEs, these obtained Equations (3.63), (3.65), 

(3.67) are transformed into matrix form. In addition, structural damping is introduced 

to add damping to the system. The mass matrix M  can be written as, 
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where, 

 1 1 1 1 2 2 2 2bMbb M A L M A L M = + + + + , (3.69) 
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The stiffness matrix Κ  can be written as, 
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where, 
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The structural damping matrix H  can be written as, 
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where b  represents the structural damping coefficient of the spring attached to the 

base mass, 1  and 2  represent the structural damping coefficients of the first and 

second beams, respectively. 

The generalized coordinate vector q  can be written as, 
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Nonlinear forcing vector Nf  can be written as, 
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As it can be understood from Equations (3.82) and (3.83), there is only a cubic 

nonlinearity which is called a cubic stiffness, acting on the first beam; however, both 

cubic and quadratic nonlinearities act on the second beam. 

External forcing vector f  can be written as, 

  0 0 0 0
T

bF=f . (3.84) 

By assembling these matrices, the matrix representation of the system can be written 

as, 

 ( ) Ni+ + +Mq K H q f = f . (3.85) 
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CHAPTER 4  

4 CASE STUDIES 

In this chapter, several case studies are carried out to see the effects of system 

parameters on the vibration characteristics of the one-end fixed L-shaped beam and 

L-shaped beam attached to a SDOF system. 

4.1 Case Study: One End Fixed L-Shaped Beam 

 

Figure 4.1. Schematic of the Fixed L-Shaped Beam 

This section covers several case studies of the one-end fixed L-shaped beam to 

observe the effects of the system parameters. Comparisons between linear and 

nonlinear systems are carried out, and it is observed that as the excitation amplitude 

increases, it is necessary to consider the nonlinear effects to capture the dynamics of 

the L-shaped beam accurately. Additionally, the effect of the number of harmonics 

used on the response is demonstrated to choose the optimum number of harmonics 

for further calculations. 
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4.1.1 Mathematical Model of the Fixed L-Shaped Beam 

In Section 3, a mathematical model is derived for an L-shaped beam attached to a 

SDOF system. Likewise, a mathematical model is needed for this case study to carry 

out case studies for the fixed L-shaped beam. The mathematical model for this 

system can be derived using the equations of motion of the L-shaped beam attached 

to a SDOF system by ignoring the motion of the base mass. By doing that, the first 

rows and columns of matrix Equations (3.68), (3.76), (3.79)  and the first rows of 

vector Equations (3.80), (3.81) which are related to the motion of the base mass are 

discarded as, 
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1 21,1 1, 2,1 2,

T

n nq q q q =  q , (4.4) 

 
1 1 211 1 2 2n n
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N N N N Nf f f f =
 

f . (4.5) 

Since the forcing vector derived in Section 3 is for the base excitation, a new forcing 

vector should be derived for the fixed L-beam case. 

A sinusoidal force is assumed to be applied on the thr  beam at the location fx  as, 

 ( ) ( ) ( )0 sin,r f fx x tF t F  = , (4.6) 

where 0F  represents the amplitude of the forcing. 

Galerkin’s method explained in Section 3.2.1 is applied to Equation (4.6) to 

discretize it as, 
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Depending on which beam force is applied, the forcing vector can be written as, 
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Inserting Equations (4.1)-(4.5) and (4.8) into Equation (3.85), matrix representation 

of the nonlinear ODE system can be obtained. Then the nonlinear ODE system is 

transformed into NLAEs using HBM explained in Section 2.2, and these NLAEs are 

solved using both HCM and ALCM explained in Sections 2.3.2 and 2.3.3, 

respectively. After solving it for generalized coordinates, responses of the beams can 

be obtained as, 
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Moreover, since the coordinate frame attached to the second beam is non-inertial, its 

response w.r.t a fixed point represented in an inertial frame (i.e., coordinate frame 

attached to the first beam) can be obtained as, 
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4.1.2 Results 

To reduce the number of system parameters, it is assumed that the materials, the 

cross sections, and the structural damping coefficients of the first and the second 

beams are the same, i.e. 1 2  = = , 1 2E E E= = , 1 2A A A= = , 1 2I II= = , 

1 2  = = .  

4.1.2.1 Linear Model Results 

First, the validity of the linear model is checked by comparing the results obtained 

with results obtained by commercial finite element (FE) software ANSYS. 

Responses w.r.t the coordinate frame of the first beam, i.e., 
( )1

rw  are compared with 

the ANSYS FRF results since ANSYS gives deformation results only w.r.t inertial 

frames. BEAM189 elements are used in the model. Moreover, in order to perform 

only in-plane motion, other translational and rotational DOFs are fixed. This study 

is performed for the system parameters given in Table 4.1. Using these parameters, 

other system parameters could be obtained as, 
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Results of the linear system are compared to the FE software results in Figure 4.3 

and Figure 4.4. 

Table 4.1. Selected System Parameters for Case 1 

System 

Parameters 

Case 1 System 

Parameters 

Case 1 

1AL  0.3925kg  
3

1

EI

L
 1333.3

N

m
 

2AL  0.3925kg  
3

12

EA

L
 

7

3
8 10

N

m
  

1M  0.1kg  
2L  0.5m  

2M  0.1kg  
0F  1N  

1 1/ML L  0.5    0.01  

2 2/ML L  1  /f rx L  1 1/fx L =  

 

 

Figure 4.2. ANSYS Model of the Fixed L-Shaped Beam 
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Figure 4.3. Comparison of the Linear Model with ANSYS at 1 1/ 1x L =  for Case 1 

 

Figure 4.4. Comparison of the Linear Model with ANSYS at 2 2/ 1x L =  for Case 1 
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It can be seen that the results obtained in Figure 4.3 and Figure 4.4 are identical to 

each other, which verifies the linear model developed.  

After verifying the model, the first two mode shapes of the fixed L-shaped beam for 

Case 1 are obtained as in Figure 4.5.  

 

Figure 4.5. Mode Shapes of the Fixed L-Shaped Beam for Case 1 

4.1.2.2 Investigation of the Effect of the Harmonics 

To investigate the effect of the number of harmonics used, HBM is utilized for one, 

two, and three harmonics with bias terms. The investigation is performed using case 

1 parameters. Moreover, in order to see the effect of the forcing amplitude on the 

number of harmonics used, results are obtained for 0 1F N=   and 0 2F N= . 
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Figure 4.6. Comparison of the Harmonics Used at 1 1/ 1x L =  for 0 1F N=  

 

Figure 4.7. Comparison of the Harmonics Used at 1 1/ 1x L =  for 0 2F N=   
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Figure 4.8. Comparison of the Harmonics Used at 2 2/ 1x L =  for 0 1F N=   

 

Figure 4.9. Comparison of the Harmonics Used at 2 2/ 1x L =  for 0 2F N=  
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The responses in Figure 4.6 and Figure 4.8 are identical to each other; however, in 

Figure 4.7 and Figure 4.9, the difference near the resonance points becomes clear. 

The effect of the squared nonlinearity can be seen from the notches in the responses 

obtained using higher harmonics. It can be understood from these figures that this 

nonlinearity takes into effect under high forcing. Moreover, two harmonics and three 

harmonics solutions are nearly identical. They only differ from each other slightly 

around resonance points. However, this difference can be disregarded, and two 

harmonic solution could be preferred since three harmonic solution takes much more 

time than the two harmonics solution. 

4.1.2.3 Case Study Results 

After verifying the linear model and observing the effect of the harmonics, several 

case studies are performed. Case 1 is used as the basis for the system parameters, 

and for each study, one of the parameters is selected as the controlled variable while 

others are kept constant to observe its effects on the nonlinear response of the system. 

The selected controlled variables and their values are given in Table 4.2. The natural 

frequencies of the linear system for each case are presented in Table 4.3. 

In the first case study, to observe the effect of forcing amplitude on the nonlinear 

response of the model, different excitation forcing amplitudes are considered, and 

the normalized responses with respect to forcing amplitudes are compared with each 

other. It can be seen from Figure 4.10 and Figure 4.11 that, when the forcing is very 

small, the responses are very similar to the response of the linear system. When a 

forcing with an amplitude of 0.05 N is applied, cubic stiffness nonlinearity starts to 

take effect. As the forcing amplitude increases, the resonance frequency shifts to the 

right, which is the outcome of the cubic stiffness nonlinearity dominant in this 

system. Moreover, when the forcing amplitude is 2N, the squared nonlinearity 

becomes effective, as seen from the notch at the first resonance.  
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Figure 4.10. Effect of the Forcing Amplitude on the FRF at 1 1/ 1x L =  for Case 1 

 

Figure 4.11. Effect of the Forcing Amplitude on the FRF at 2 2/ 1x L =  for Case 1 
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Table 4.2. Controlled Variables and Their Values 

 Controlled Variable and Its Value 

Case 2 
1 0.19625kgAL =  

Case 3 
2 0.19625kgAL =  

Case 4 
1 0.5M kg=  

Case 5 
2 0.5M kg=  

Case 6 
1 1/ 1ML L =  

Case 7 
2 2/ 0.5ML L =  

Case 8 
3

1

666.67
EI N

L m
=  

Case 9 7

3 3

1

4 10
2

EA N

L m
=   

Case 10 
2 0.1L m=  

 

Table 4.3. Natural Frequencies for Each Case   

 
1 ( / )rad s  2 ( / )rad s  

Ansys 55.365 150.36 

Case 1 55.37 150.44 

Case 2 29.57 118.25 

Case 3 89.557 295.91 

Case 4 54.812 143.77 

Case 5 35.75 106.95 

Case 6 53.796 145.64 

Case 7 62.223 170.97 

Case 8 39.152 106.38 

Case 9 55.37 150.44 

Case 10 55.37 150.44 

 

In the second case study, the effect of the masses of the first and the second beams  

( 1AL and 2AL ) on the vibration characteristics are compared. These are labeled 

as Case 2 and Case 3, respectively. Since densities and areas of each beam are equal 
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to each other, changing these parameters result in a change in the ratio of the beam 

lengths. The steady-state frequency responses at 1 1/ 1x L =  and 2 2/ 1x L =  are given 

in Figure 4.12 and Figure 4.13, respectively.  

It can be seen from the figures that a decrease in the mass of the first beam causes a 

decrease in the resonance frequencies, whereas decreasing the mass of the second 

beam causes an increase in the resonance frequencies in contrast to Case 2. 

Additionally, a decrease in the 12 /L L   ratio makes cubic stiffness more dominant at 

the first resonance frequency. Moreover, increasing the mass of the first beam 

amplifies the resonance response at the tip of the beam; similarly, an increase in the 

second beam’s mass amplifies the response at the tip point of the second beam. 

 

Figure 4.12. Comparison of the FRFs of the Cases 1, 2, and 3 at 1 1/ 1x L =  
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Figure 4.13. Comparison of the FRFs of the Cases 1, 2, and 3 at 2 2/ 1x L =  

The third case study investigates the effect of the concentrated masses connected to 

the first and second beams ( 1M and 2M ) on the vibration characteristics. These are 

labeled as Case 4 and Case 5, respectively. The frequency responses at 1 1/ 1x L =  and 

2 2/ 1x L =  are obtained and given in Figure 4.14 and Figure 4.15, respectively. It can 

be seen that increase in the mass of the concentrated mass attached to the first beam 

has a slight effect on the resonance frequencies and frequency responses compared 

to the concentrated mass attached to the second beam. The increase in the second 

concentrated mass causes a decrease in the resonance frequencies, which is an 

expected result. Moreover, an increase in the second concentrated mass decreases 

the resonance amplitude at the tip of the second beam significantly around the second 

resonance frequency of the L-shaped beam. 
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Figure 4.14. Comparison of the FRFs of the Cases 1, 4 and 5 at 1 1/ 1x L =  

 

Figure 4.15. Comparison of the FRFs of the Cases 1, 4 and 5 at 2 2/ 1x L =  
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The fourth case study investigates the effect of the locations of the first and the 

second concentrated masses (
1 1/ML L and 

2 2/ML L ) on the vibration characteristics. 

These are labeled as Case 6 and Case 7, respectively. The steady-state frequency 

responses obtained at 1 1/ 1x L =   and 2 2/ 1x L =  are given in Figure 4.16 and Figure 

4.17, respectively. 

As seen from the results of Case 6, a change in the ratio of 
1 1/ML L  has a negligible 

effect on the system. On the other hand, a decrease in the 
2 2/ML L  ratio causes an 

increase in the resonance frequencies. 

 

Figure 4.16. Comparison of the FRFs of the Cases 1, 6 and 7 at 1 1/ 1x L =  
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Figure 4.17. Comparison of the FRFs of the Cases 1, 6 and 7 at 2 2/ 1x L =  

In the fifth case study, the effect of the stiffness of the first beam (
3

1/EI L ) is 

investigated. The stiffness parameter of the first beam is reduced by half in Case 8. 

Since the length ratio of the beams is 1.0 for Case 1, the stiffness parameter of the 

second beam is the same as the first beam, which means that this parameter affects 

the stiffness of both the first and the second beams. Responses of the L-shaped beam 

obtained at 1 1/ 1x L =  and 2 2/ 1x L =  are given in Figure 4.18 and Figure 4.19, 

respectively.  

It is observed from the figures that when the stiffness is decreased, the resonance 

frequencies also decrease. Additionally, as the linear stiffness decreases, the effect 

of the nonlinear stiffness becomes more dominant. It should be noted that quadratic 

nonlinearity becomes more apparent in the results around the first resonance 

frequency. It is also observed that the responses at the tips of each beam at the 

resonance frequencies increase. 
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Figure 4.18. Comparison of the FRFs of the Cases 1 and 8 at 1 1/ 1x L =  

 

Figure 4.19. Comparison of the FRFs of the Cases 1 and 8 at 2 2/ 1x L =  
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In the sixth case study, the effects of nonlinearity terms are investigated. These are 

cubic and quadratic nonlinearities that are proportional to  ( )3

1/ 2EA L  and 
2L  terms, 

respectively. Since the ratio of the lengths of the beams is equal to 1.0, the coefficient 

of the cubic nonlinearity for the second beam ( ( )3

2/ 2EA L ) is equal to the coefficient 

of the cubic nonlinearity for the first beam. Responses of the L-shaped beam obtained 

at 1 1/ 1x L =  and 2 2/ 1x L =  are given in Figure 4.20 and Figure 4.21, respectively. 

To demonstrate the effects of the nonlinearity, 0F  is selected as 2N instead of 1N. 

As seen from the figures, a decrease in the cubic nonlinearity parameter in Case 9 

decreases the cubic stiffness effect and shifts the resonance points to the right as 

expected. However, decreasing 2L  five times in Case 10 has no significant effect on 

the responses. This shows that the cubic nonlinearity is much more dominant than 

the quadratic one. 

 

Figure 4.20. Comparison of the FRFs of the Cases 1, 9 and 10 at 1 1/ 1x L =  
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Figure 4.21. Comparison of the FRFs of the Cases 1, 9 and 10 at 2 2/ 1x L =  

4.2 Case Study: L-Shaped Beam Attached to a SDOF System 

This section covers several case studies of the L-shaped beam attached to a SDOF 

system in order to observe the effects of the system parameters. Additionally, as in 

Section 4.1, comparisons between linear and nonlinear systems are carried out, and 

it is seen that it is necessary to consider the nonlinear effects as the excitation 

amplitude increases to capture the dynamics of the L-shaped beam attached to a 

SDOF system accurately. Additionally, the effect of the number of harmonics used 

on the response is demonstrated to choose the optimum number of harmonics for 

further calculations. 
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4.2.1 Mathematical Model 

The mathematical model for the L-shaped beam attached to a SDOF system is 

derived in Chapter 3. The base excitation of the system is assumed to be a sinusoidal 

forcing as, 

 ( )0 sinb tF F = . (4.14) 

To obtain the responses of the beams in their own reference frames, Equation (4.9) 

is used. 

 ( ) ( )
1

,

1

,
r

i

r
r i

n

r r

i r

x
w x t q t

L=

+  
 =  
   

 . (4.15) 

To find the response of the second beam w.r.t the coordinate frame of the first beam, 

the following equation is used. 

 
( ) ( ) ( ) ( ) ( )( )

2 2

2

1 2

1 12

1

2 2
2 2 , 1,

2 1

, 1
n n

i

i

i

i

i

x x L
w x t q t i q t

L L L =

+

=

  
 = + + 
   

  . (4.16) 

Equation (4.15) for 1r =  and Equation (4.16) could be used to obtain the responses 

of the L-shaped beam without including the motion of the base mass. Using these 

equations, effects of the system parameters on the L-shaped beam could be 

examined. Moreover, the response of the L-shaped beam w.r.t an inertial frame, i.e., 

earth frame, could be obtained using the following equations as, 

 ( ) ( ) ( )1
1

1 1

1

1

( )

,

1

,
rn

b i

i

i

e x
w x t w t q t

L=

+  
 = +  
   

 , (4.17) 

 
( ) ( ) ( ) ( ) ( )( )

2 2
1

2 2

2

2

1 12

2 2 2, 1,

1

, 1
n n

i

i

e

i

i

i

x x L
w x t q t i q t

L L L =

+

=

  
 = + + 
   

  . (4.18) 
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4.2.2 Results 

As in Section 4.1.2, the number of system parameters is reduced by assuming the 

materials, cross sections, and structural damping coefficients of the first and the 

second beams are the same, i.e. 1 2  = = , 1 2E E E= = , 1 2A A A= = , 1 2I II= = , 

1 2  = = .  

4.2.2.1 Linear Model Results 

Responses w.r.t the coordinate frame of the first beam, i.e., 
( )e

rw  are compared with 

the ANSYS FRF results since ANSYS gives deformation results only w.r.t inertial 

frames.   

Before carrying out case studies, the linear model is validated by comparing the 

results obtained with results obtained by ANSYS. BEAM189 elements are used in 

the model. Moreover, in order to perform only in-plane motion, other translational 

and rotational DOFs are fixed. This study is performed using the same system 

parameters given in Table 5.1. Additional parameters related to the base mass are 

given in Table 4.4. Using these parameters, other system parameters could be 

obtained using Equations (4.11)-(4.13). Results of the linear system are compared 

with the FE software results in Figure 4.23, Figure 4.24 and Figure 4.25. Moreover, 

the first three mode shapes of the system are shown in Figure 4.26. 

Table 4.4. Additional System Parameters for Case 1 

System 

Parameters 

Case 1 System 

Parameters 

Case 1 

bM  10kg  
bk  510

N

m
 

b  0.01  
0F  7.5 N  
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Figure 4.22. ANSYS Model of the L-Shaped Beam Attached to a SDOF System 

 

Figure 4.23. Comparison of bw  obtained by Linear Model and ANSYS for Case 1 
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Figure 4.24. Comparison of the Linear Model with ANSYS at 1 1/ 1x L =  for Case 1 

 

Figure 4.25. Comparison of the Linear Model with ANSYS at 2 2/ 1x L =  for Case 1 
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Figure 4.26. Mode Shapes for the L-Shaped Beam Attached to a SDOF System 

Figure 4.23, Figure 4.24 and Figure 4.25 show that responses obtained using the 

ANSYS model and the linear model are nearly identical to each other, which verifies 

the linear model. Moreover, the first and third resonance points are close to the first 

two resonance points of the fixed L-shaped beam using Case 1 parameters and the 

second resonance point is nearly equal to the frequency of the system where the L-

shaped beam moves as a rigid body. In addition, Figure 4.26 shows that the first and 

third resonances are related to the deformation of the L-shaped beam, whereas; the 

second resonance is related to the motion of the base mass. As it can be seen from 

the second mode shape, beam acts as like a rigid body.  

4.2.2.2 Investigation of the Effect of the Harmonics 

In this section, HBM is utilized for one, two, and three harmonics with bias terms in 

order to analyze the effect of the number of harmonics used. This analysis is 

performed using case 1 parameters.  
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Figure 4.27. Comparison of the Harmonics Used for bw  

 

Figure 4.28. Comparison of the Harmonics Used at 1 1/ 1x L =  
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Figure 4.29. Comparison of the Harmonics Used at 2 2/ 1x L =  

The responses compared in Figure 4.27, Figure 4.28, and Figure 4.29 are identical. 

In the case of base excitation, the effect of the squared nonlinearity cannot be seen 

contrary to the fixed beam case since there are no notches in the responses obtained 

using higher harmonics. However, to obtain a more accurate response and observe 

whether notches start to form, two harmonic solution is used for the case studies. 

4.2.2.3 Case Study Results 

After verifying the linear model and observing the effect of the harmonics, several 

case studies are performed. As in Section 4.1.2.3, Case 1 is used as the basis for the 

system parameters, and one of the structural parameters is selected as the controlled 

variable while others are kept constant for each study to observe the effects of these 

parameters on the nonlinear response of the system. The controlled variables are 

selected the same as in Section 4.1.2.3, which are given in Table 4.2. The natural 

frequencies of the linear system for each case are presented in Table 4.5. 
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The first case study is carried out to observe the effect of the forcing amplitude on 

the nonlinear response of the model. Different excitation forcing amplitudes are 

considered, and the normalized responses with respect to forcing amplitudes are 

compared with each other. It can be seen from Figure 4.30, Figure 4.31, and Figure 

4.32 that, when the forcing is very small, the responses are very similar to the 

response of the linear system. When the forcing is increased to 1N, the nonlinear 

response starts to differ from the linear one, and when forcing becomes 2N, cubic 

nonlinearity starts to take effect. As the forcing amplitude increases, the resonance 

frequency shifts to the right, which is the outcome of the cubic stiffness nonlinearity 

dominant in this system. Unlike Section 4.1.2.3, squared nonlinearity does not affect 

the nonlinear response since notches do not occur. Moreover, since the base mass is 

excited, resonance frequencies corresponding to the motion of the base mass, in this 

case, the second resonance, have greater amplitudes than the other frequencies. 

Additionally, as the effect of the nonlinearity increases, the first resonance tends to 

get closer to the second resonance, which increases its amplitude. 

 

Figure 4.30. Effect of the Forcing Amplitude on the FRF of bw  for Case 1 
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Figure 4.31. Effect of the Forcing Amplitude on the FRF at 1 1/ 1x L =  for Case 1 

 

Figure 4.32. Effect of the Forcing Amplitude on the FRF at 2 2/ 1x L =  for Case 1 
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In the second case study, by comparing Cases 2 and 3 in Figure 4.33, Figure 4.34, 

and Figure 4.35, the effect of the masses of the first and the second beams on the 

vibration characteristics and frequency responses are investigated. It can be 

understood that a decrease in the mass of the first beam causes the resonance 

frequencies to decrease; however, a decrease in the mass of the second beam causes 

the resonance frequencies to increase in contrast to Case 2. Moreover, the decrease 

in 2AL  causes the first resonance frequency and the second resonance frequency 

which are related to the first deformational mode of the beam and the mode of the 

base mass, respectively, to get closer to each other. Decreasing beyond a specific 

value causes these resonance frequencies to switch, as in Case 3. This amplifies the 

effect of the cubic nonlinearity on the second resonance as the curve leans to the 

right around that frequency. This effect also causes the second resonance of bw  to 

decrease significantly. 

Table 4.5. Natural Frequencies for Each Case   

 
1 ( / )rad s  2 ( / )rad s  3 ( / )rad s  

Ansys 55.019 95.693 156.60 

Case 1 55.024 95.693 156.68 

Case 2 29.567 92.518 126.82 

Case 3 84.147 104.5 298.9 

Case 4 54.352 93.865 152.26 

Case 5 35.679 87.808 120.81 

Case 6 53.429 95.873 151.69 

Case 7 61.465 97.41 176.03 

Case 8 39.053 91.056 115.99 

Case 9 55.024 95.693 156.68 

Case 10 55.024 95.693 156.68 
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Figure 4.33. Comparison of the FRFs of bw  for the Cases 1, 2 and 3 

 

Figure 4.34. Comparison of the FRFs of the Cases 1, 2 and 3 at 1 1/ 1x L =  
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Figure 4.35. Comparison of the FRFs of the Cases 1, 2 and 3 at 2 2/ 1x L =  

In the third case study, the effect of the concentrated masses connected to the first 

and second beams on the vibration characteristics are studied by comparing Case 2 

and 3 in Figure 4.36, Figure 4.37, and Figure 4.38. It is understood that the change 

in the mass of the concentrated mass attached to the first beam has a minor effect on 

the frequency responses compared to the change in the concentrated mass attached 

to the second beam. The increase in the second concentrated mass causes a decrease 

in the resonance frequencies. In addition, a decrease in the first resonance frequency 

causes a great decrease in the amplitude of bw  since it gets further away from the 

mode of bw  which decreases its effect on the first resonance.  



 

 

69 

 

Figure 4.36. Comparison of the FRFs of bw  for the Cases 1, 4 and 5 

 

Figure 4.37. Comparison of the FRFs of the Cases 1, 4 and 5 at 1 1/ 1x L =  
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Figure 4.38. Comparison of the FRFs of the Cases 1, 4 and 5 at 2 2/ 1x L =  

The effect of the locations of the first and the second concentrated masses on the 

vibration characteristics is studied in the fourth case study. It is observed that the 

location of the first concentrated mass has little effect on the frequency responses 

and natural frequencies, as seen from the results of Case 6. On the other hand, the 

location of the second concentrated mass has a significant effect, especially on the 

second and third resonance points. Decreasing 
2 2/ML L  ratio causes an increase in 

the resonance frequencies, especially on the third one. Moreover, the amplitude of 

bw  at the second resonance decreases as 
2 2/ML L  decreases since nonlinearity starts 

to take greater effect. 
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Figure 4.39. Comparison of the FRFs of bw  for the Cases 1, 6 and 7 

 

Figure 4.40. Comparison of the FRFs of the Cases 1, 6 and 7 at 1 1/ 1x L =  
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Figure 4.41. Comparison of the FRFs of the Cases 1, 6 and 7 at 2 2/ 1x L =  

The effect of the stiffness parameter of the first is investigated in the fifth case study. 

Since the stiffness parameter of the second beam is a dependent variable, its effect is 

not investigated. From Figure 4.42, Figure 4.43, and Figure 4.44, it is observed that 

a decrease in the stiffness causes the resonance frequencies to decrease also. 

Moreover, as the linear stiffness parameter decreases, the nonlinearities in the system 

become more dominant. Additionally, the effect of the quadratic nonlinearity 

becomes more apparent on the first beam around the first resonance, as seen in Figure 

4.43. 
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Figure 4.42. Comparison of the FRFs of bw  for the Cases 1 and 8 

 

Figure 4.43. Comparison of the FRFs of the Cases 1 and 8 at 1 1/ 1x L =  
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Figure 4.44. Comparison of the FRFs of the Cases 1 and 8 at 2 2/ 1x L =  

The effects of nonlinearities are studied in the sixth case study. These are cubic and 

quadratic nonlinearities. Cubic nonlinearity is proportional to ( )3

1/ 2EA L  , and 

quadratic nonlinearity is inversely proportional to 2L  terms. Since the cubic 

nonlinearity parameter of the second beam is a dependent variable, its effect is not 

investigated. As seen in Figure 4.45, Figure 4.46, and Figure 4.47, decreasing the 

cubic nonlinearity parameter decreases its effect on the system, especially on the first 

and third resonance points, which are related to the deformational modes of the 

beam. However, a decrease in 2L  has nearly no effect on the system as the plots of 

Case 1, and Case 10 are nearly the same. It can be concluded that the effect of the 

cubic nonlinearity is more dominant compared to the squared one. 
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Figure 4.45. Comparison of the FRFs of bw  for the Cases 1, 9 and 10 

 

Figure 4.46. Comparison of the FRFs of the Cases 1, 9 and 10 at 1 1/ 1x L =  
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Figure 4.47. Comparison of the FRFs of the Cases 1, 9 and 10 at 2 2/ 1x L =  
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CHAPTER 5  

5 VIBRATION REDUCTION USING L-SHAPED BEAMS 

In this chapter, L-shaped beams are proposed as vibration absorbers as alternatives 

to tuned mass dampers (TMDs). The system is constructed as a single DOF 

externally excited base mass to which an L-shaped beam is attached in order to 

reduce the amplitude of the vibration of the base mass. The schematic of the system 

can also be seen in Figure 3.1. The system parameters of the nonlinear L-shaped 

beam are optimized for several combinations of base mass, the spring attached to it, 

and the forcing applied to it. After that, linear L-shaped beams and cantilever beams 

are optimized to reduce vibrations on the base mass, and the effects of nonlinearities 

on the frequency responses of the base are investigated. 

5.1 Optimization of the Nonlinear System 

The parameters of the nonlinear L-shaped beam are optimized to reduce the 

maximum amplitude of the vibration of the system. There are 13 independent system 

parameters of the L-shaped beam needed to be optimized for vibration reduction. 

Since optimization of these many parameters will take a lot of time and require too 

much computational power, these parameters are reduced to 10 by assuming the 

materials, the cross sections, and the structural damping coefficients of the first and 

the second beams are the same, i.e. 1 2  = = , 1 2E E E= = , 1 2A A A= = , 

1 2I II= = , 1 2  = = . After reducing the system parameters, the optimization 

space is bounded by selecting an upper and a lower limit for each parameter. These 

limits can be seen in Table 5.1. 
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Table 5.1. Upper and lower limits for system parameters 

 ( )1 gAL k  ( )2 gAL k  ( )1M kg  ( )2M kg  
1

1

ML

L
 

Lower 

Limit 

0.025  0.025  0.025  0.025  0  

Upper 

Limit 

0.1 bM  0.1 bM  0.1 bM  0.1 bM  1  

 
2

2

ML

L
 3

1

EI N

L m

 
 
 

 
3 3

12

EA N

L m

 
 
 

 
( )2L m    

Lower 

Limit 

0  150  485 10  0.05  0.001  

Upper 

Limit 

1  315 10  785 10  0.5  0.75  

 

Additionally, to limit the total mass of the L-shaped beam, a constraint equation is 

introduced as, 

 1 2 1 2 0.1 bL M MA A ML + + +   . (5.1) 

The L-shaped beam parameters are optimized for several cases. In each case, 

different combinations of the base mass ( bM ) and the base spring ( bk ) are selected, 

whereas the structural damping ratio of the base spring ( b ) is selected as 0.01 for 

all cases. These selected base parameters can be seen in Table 5.2. 

Table 5.2. Selected base parameters for each case 

CASES 1 2 3 4 

( )bM kg  5  10  10  15  

b

N
k

m

 
 
 

 

410 10  410 10  420 10  415 10  
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The cost function is selected as the maximum amplitude of the frequency response 

of the base mass ( bw ) in a frequency range of 0 and 300 /rad s . Since the cost 

function is highly nonlinear in the optimization space due to the nature of the 

nonlinear system, MATLAB’s Genetic Algorithm (GA) function is used for 

optimization. Then, the optimized systems are compared with alternative TMD 

systems. 

5.1.1 Mathematical Formulization of the TMD System 

To compare the L-shaped beam system with the TMD counterpart, the governing 

mathematical equations are obtained. The system is constructed as a two DOF mass-

spring system with structural damping, as in the figure below. 

 

Figure 5.1. Schematic of the TMD System 

The governing ODE of the system can be written as, 

 ( )TMD TMD TMD TMD TMD TMDM q + K + iH q = f , (5.2) 
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where, 

 
0

0

b

TMD

M

m

 
 
 

TMDM = , (5.3) 

 
b TMD TMD

TMD TMD

k k k

k k

+ − 
 
− 

TMDK = , (5.4) 

 
T

TMD TMb b TMD TMD

TMD MD

D

TMD TMD

k k k

k k

  

 

+ − 
 

− 
TMDH = , (5.5) 

 
b

TMD

w

w

 
 
 

TMDq = , (5.6) 

 
( )0 sin

0

F t 
 
 

TMDf = . (5.7) 

In the equations above, TMDm , TMDk , and TMD  represent the mass of the TMD, the 

stiffness of the spring connected to base mass, and the structural damping ratio, 

respectively. 

5.1.2 Case Study Results 

The frequency responses of the single DOF system, the optimized L-shaped beams 

for the selected cases under different forcing amplitudes, and their TMD counterparts 

are compared in the figures below. In order to compare them in the same plot, 

normalized responses w.r.t the forcing amplitude are obtained. The normalized 

maximum amplitude results for each case can be seen in Table 5.3, the optimized 

system parameters are given in Table 5.4-Table 5.7 and the normalized responses of 

the optimized system can be seen in Figure 5.2-Figure 5.13. 
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Table 5.3. Maximum Normalized Amplitudes for Each Case Study 

 Case 1 Case 2  Case 3 Case 4 

Single DOF 31.000 10−  49.992 10−  45.000 10−  46.661 10−  

TMD 54.732 10−  54.539 10−  52.264 10−  53.070 10−  

0 5F N=  55.109 10−  54.972 10−  52.625 10−  53.221 10−  

0 15F N=  55.328 10−  55.279 10−  52.566 10−  53.093 10−  

0 30F N=  55.465 10−  54.895 10−  52.635 10−  53.174 10−  

 

Table 5.4. Optimized System Parameters for Case 1 

 
0 5F N=  0 15F N=  0 30F N=  

( )1 gAL k  0.0803  0.165  0.244  

( )2 gAL k  0.206  0.0740  0.0996  

( )1M kg  0.100  0.156  0.0915  

( )2M kg  0.101  0.100  0.0620  

1

1

ML

L
 

0.463  0.500  0.448  

2

2

ML

L
 

0.612  0.0760  0.202  

3

1

EI N

L m

 
 
 

 
945  1243  1222  

3 3

12

EA N

L m

 
 
 

 
79.12 10  74.64 10  71.25 10  

( )2L m  0.228  0.144  0.173  

  0.354  0.347  0.340  
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Table 5.5. Optimized System Parameters for Case 2 

 
0 5F N=  0 15F N=  0 30F N=  

( )1 gAL k  0.243  0.267  0.200  

( )2 gAL k  0.530  0.0675  0.117  

( )1M kg  0.0281  0.273  0.231  

( )2M kg  0.1865  0.390  0.446  

1

1

ML

L
 

0.809  0.526  0.849  

2

2

ML

L
 

0.774  0.101  0.280  

3

1

EI N

L m

 
 
 

 
1062  1450  2143  

3 3

12

EA N

L m

 
 
 

 
81.58 10  75.58 10  72.30 10  

( )2L m  0.108  0.193  0.175  

  0.351  0.383  0.3611  
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Table 5.6. Optimized System Parameters for Case 3 

 
0 5F N=  0 15F N=  0 30F N=  

( )1 gAL k  0.437  0.177  0.460  

( )2 gAL k  0.107  0.395  0.139  

( )1M kg  0.285  0.246  0.172  

( )2M kg  0.130  0.147  0.222  

1

1

ML

L
 

0.680  0.599  0.539  

2

2

ML

L
 

0.310  0.575  0.215  

3

1

EI N

L m

 
 
 

 
2447  1742  2735  

3 3

12

EA N

L m

 
 
 

 
76.36 10  72.96 10  75.13 10  

( )2L m  0.128  0.229  0.176  

  0.330  0.349  0.335  
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Table 5.7. Optimized System Parameters for Case 4 

 
0 5F N=  0 15F N=  0 30F N=  

( )1 gAL k  0.185  0.0793  0.151  

( )2 gAL k  0.126  0.252  0.427  

( )1M kg  0.877  0.448  0.325  

( )2M kg  0.303  0.722  0.595  

1

1

ML

L
 

0.770  0.917  0.836  

2

2

ML

L
 

0.0807  0.890  0.445  

3

1

EI N

L m

 
 
 

 
2528  2260  1483  

3 3

12

EA N

L m

 
 
 

 
74.84 10  73.46 10  74.52 10  

( )2L m  0.161  0.150  0.102  

  0.357  0.379  0.429  
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Figure 5.2. Frequency Response of bw  for Case 1 

 

Figure 5.3. Frequency Response of bw  for Case 2 
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Figure 5.4. Frequency Response of bw  for Case 3 

 

Figure 5.5. Frequency Response of bw  for Case 4 
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Figure 5.6. Frequency Response for Case 1 at 1 1/ 1x L =  

 

Figure 5.7. Frequency Response for Case 1 at 2 2/ 1x L =  
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Figure 5.8. Frequency Response for Case 2 at 1 1/ 1x L =  

 

Figure 5.9. Frequency Response for Case 2 at 2 2/ 1x L =  
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Figure 5.10. Frequency Response for Case 3 at 1 1/ 1x L =  

 

Figure 5.11. Frequency Response for Case 3 at 2 2/ 1x L =  
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Figure 5.12. Frequency Response for Case 4 at 1 1/ 1x L =  

 

Figure 5.13. Frequency Response for Case 4 at 2 2/ 1x L =  
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As it can be seen from Figure 5.2-Figure 5.5, vibration is reduced by approximately 

20 times both for the TMD case and nonlinear L-shaped beam with different forcing 

cases. However, TMD gives slightly better results than the L-shaped beam, as seen 

in Table 5.3. The cause of the differences is probably due to nonlinear optimization 

not finding the global minimum as the optimization space is high dimensional, and 

the system is highly nonlinear. If the global minimums of the L-shaped beam cases 

are found, the responses of them probably converge to the TMD cases. Additionally, 

investigating the optimized parameters, it is observed that the damping ratio of the 

beam for all cases ranges between 0.33-0.43. It means that, for optimization, the 

damping ratio should be between this range. 

5.2 Investigation of the Effects of Nonlinearities on the Optimized Linear 

System 

In this section, linear L-shaped beams are used as vibration absorbers, and the 

frequency responses are obtained for different cases. These results are compared with 

optimized linear cantilever beam counterparts since cantilever beams are widely used 

as vibration absorbers in literature such as studies [26]–[30]. Then, the effect of the 

nonlinearities on frequency responses of both the cantilever beam and the L-shaped 

beam vibration absorbers are investigated. 

For the calculations, a sinusoidal base excitation with an amplitude of 30N is 

assumed to be applied as in Equation (4.14). 

5.2.1 Mathematical Modeling of Nonlinear Cantilever Beams 

To investigate the cantilever beam as a vibration absorber, a mathematical model is 

derived. By disregarding the parts related to the second beam of the mathematical 

model for the L-shaped beam attached to a SDOF system derived in Chapter 3, the 

mathematical model for the cantilever beam is obtained as, 
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 ( ) Ni+ + +Mq K H q f = f , (5.8) 

where, 

 

1

1

1 1 1 1

1

1 1,1 1,

,1 ,

1 1

1 11 11

1 11 11

n

n

n

n nn

Mbb M b M b

Mb M M

Mb M M

 
 
 

=
 
 
  

M , (5.9) 

 
1,1 1, 1

,1 ,1 1 1

11 11

11 11

n

n n n

bk

K K

K K

 
 
 

=  
 
  

K , (5.10) 

 
1,1 1, 1

,1 ,1 1 1

1 11 1 11

1 11 1 11

n

n n n

b bk

K K

K K



 

 

 
 
 

=  
 
  

H , (5.11) 

 
11,1 1,

T

b nq q q =  q , (5.12) 

 
1 1

1 10
n

T

N N Nf f =
 

f , (5.13) 

  0 0
T

bF=f . (5.14) 

5.2.2 Optimization of the Linear Systems 

To reduce the dimension of the optimization space, optimization parameters of the 

linear L-shaped and cantilever beams are reduced by assuming the cross sections and 

the materials of the first and the second beam are the same as in Section 5.1. By 

doing that, the number of L-shaped and cantilever beam parameters needed to be 
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optimized are reduced to eight and five, respectively. The upper and the lower limits 

for each parameter are selected as the values in Table 5.1. 

5.2.3 Nonlinearity Parameters 

To investigate the effect of cubic nonlinearity, the cross sections of the beams are 

assumed rectangular. A schematic of the cross-section can be seen in the figure 

below. 

 

Figure 5.14. Schematic of the cross-section of the beams 

Then, the stiffness parameter can be written as, 

 
3

3 3

1 112

EI Ebh

L L
= . (5.15) 

Using Equation (5.15), the cubic nonlinearity parameter can be written as, 

 
3 3 3 2

1 1 1

6

2 2

EA Ebh EI

L L L h
= =  . (5.16) 

As it can be understood from Equation (5.16), the cubic nonlinearity parameter is 

inversely proportional to the square of the thickness of the beam ( h ). 

Since the effect of the squared nonlinearity is negligible compared to the effect of 

the cubic nonlinearity, as it is understood from Chapter 4, 2L  is selected as 0.1m  for 

 

 
 



 

 

94 

every case, and the effect of its value is not investigated. Additionally, since the 

cantilever beam consists of a single beam, it has no squared nonlinearity due to this 

nonlinearity being related to the second beam. The effect of the cubic nonlinearity 

on the L-shaped and cantilever beam vibration absorbers is investigated by selecting 

different values for h . 

5.2.4 Case Study Results 

The frequency responses of the SDOF system, the optimized linear L-shaped and 

cantilever beams, and the nonlinear counterparts of these systems are compared in 

the figures below. By doing this, the effect of the nonlinearities on the frequency 

responses is observed. In order to compare them in the same plot, normalized 

responses w.r.t the forcing amplitude are obtained. The base parameters for each case 

are selected as the values in Table 5.2. The optimized parameters for linear L-shaped 

and cantilever beams are given in Table 5.8 and Table 5.9. 

Table 5.8. Optimized Parameters for Linear L-Shaped Beam 

 Case 1 Case 2 Case 3 Case 4 

( )1 gAL k  0.1654  0.240  0.217  0.329  

( )2 gAL k  0.0468  0.143  0.456  0.0581  

( )1M kg  0.0861  0.260  0.111  0.598  

( )2M kg  0.202  0.352  0.216  0.516  

1

1

ML

L
 

0.379  0.790  0.516  0.659  

2

2

ML

L
 

0.223  0.138  0.536  0.279  

3

1

EI N

L m

 
 
 

 
1686  2045  1975  2316  

  0.323  0.342  0.316  0.354  
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Table 5.9. Optimized Parameters for Linear Cantilever Beam 

 Case 1 Case 2 Case 3 Case 4 

( )1 gAL k  0.121  0.345  0.476  0.343  

( )1M kg  0.289  0.621  0.395  1.15  

1

1

ML

L
 

0.596  0.568  0.899  0.894  

3

1

EI N

L m

 
 
 

 
512  544  2306  2499  

  0.338  0.359  0.323  0.393  

 

 

Figure 5.15. Frequency Response of bw  for Case 1, 0 5F N=  
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Figure 5.16. Frequency Response of bw  for Case 1, 0 30F N=  

 

Figure 5.17. Frequency Response of bw  for Case 2, 0 5F N=  
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Figure 5.18. Frequency Response of bw  for Case 2, 0 30F N=  

 

Figure 5.19. Frequency Response of bw  for Case 3, 0 5F N=  



 

 

98 

 

Figure 5.20. Frequency Response of bw  for Case 3, 0 30F N=  

 

Figure 5.21. Frequency Response of bw  for Case 4, 0 5F N=  
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Figure 5.22. Frequency Response of bw  for Case 4, 0 30F N=  

As it can be understood from the figures above, increasing the forcing amplifies the 

effect of nonlinearities. When the forcing with the amplitude 0 5F N=  is applied, the 

difference between linear and nonlinear solutions is undistinguishable, whereas the 

effect of nonlinearity becomes apparent. This shows that, under large forces, 

nonlinearities become significant, and these effects should be taken into account for 

optimization. Moreover, as the thickness of the beam decreases, the nonlinear effects 

on the system increase as expected. Additionally, it can be seen by comparing Figure 

5.18 and Figure 5.20 that nonlinearity becomes less effective as the stiffness of the 

base spring increases. One final remark can be made that is the effect of cubic 

nonlinearity is greater on the cantilever vibration absorbers compared to the L-

shaped beam ones. 
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CHAPTER 6  

6 CONCLUSION 

L-shaped beams are commonly used in engineering systems. These beams are used 

in many applications such as buildings, aerospace structures, naval structures, 

vehicles, etc. Because of these, many studies investigated these beams both 

mathematically and experimentally.  

In this thesis, a nonlinear mathematical model is derived for an L-shaped beam 

attached to a SDOF system. The model is derived by applying Hamilton’s method to 

the Euler Bernoulli Beam Theory. Nonlinear Von Karman displacement field and 

strain relationship is used for the calculation of potential energy. Galerkin’s method 

is applied to discretize the obtained nonlinear PDEs into nonlinear ODEs. 

Mathematical models for fixed L-shaped beam and cantilever beam attached to a 

SDOF system are derived using the governing ODEs of the L-shaped beam attached 

to a SDOF system. Then, Harmonic Balance method is applied in order to transform 

the nonlinear ODEs into nonlinear algebraic equations. These equations are solved 

in a frequency range using Newton’s method with Arc-Length Continuation and 

Homotopy Continuation in order to obtain the steady-state frequency response of the 

system. 

The linearized models for both fixed L-shaped beam and L-shaped beam attached to 

a SDOF system are validated using the commercial FE analysis program ANSYS. 

Then, case studies are carried out in order to observe the effects of the system 

parameters on the frequency responses. In these case studies, the effects of the 

amplitude of the forcing applied, the masses of the beams and the concentrated 

masses, the locations of the concentrated masses, the stiffness of the beams, the cubic 

and the quadratic nonlinearities are investigated and discussed. 
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Finally, these beams are proposed as vibration absorbers, and the structural 

parameters of the nonlinear beams are optimized to reduce the vibration of the base 

mass. To investigate the effectiveness of L-shaped beams, they are compared with 

TMDs, and it is concluded that their effect on vibration reduction is very similar to 

the TMD devices. Moreover, the nonlinear effects on the optimized linear L-shaped 

beam and cantilever beam vibration absorbers are studied, and these are compared 

with each other to see how much nonlinearities change the frequency responses of 

each beam. It is deduced from this study that, under large forces, nonlinearities play 

a significant role in the responses of the beams. 

For future works, these analyses can be experimentally validated. Moreover, a more 

complex mathematical model can be derived using the Timoshenko beam theory, 

which can be compared with the mathematical model obtained in this thesis. Lastly, 

these beams can be proposed as vibration amplifiers to harvest energy like the 

piezoelectric energy harvesters. 
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